- Ruveda, E. A. (1984) Phytochemistry 23, 1685.
- Timmermann, B. N., Luzbetak, D. J., Hoffmann, J. J., Jolad, S. N., Schran, K. H., Bates, R. B. and Klenck, R. E. (1983) Phytochemistry 22, 523.
- Oriental, M. A., Guerrero, E. and Giordano, O. S. (1984) Rev. Latinoam. Quim. 15, 73.
- Bruun, T., Jackman, L. M. and Stenhagen, E. (1962) Acta Chem. Scand. 16, 1675.
- 8. Rose, A. F. (1980) Phytochemistry 19, 2689.
- Bohlmann, F., Ahmed, M., Borthakur, N., Wallmeyer, M., Jakupovic, J., King, R. M. and Robinson, H. (1982) Phytochemistry 21, 167.

- 10. Bohlmann, F. and Zdero, C. (1976) Phytochemistry 15, 1075.
- 11. Zalkow, L. H., Harris, R. N., III, Van Dervier, D. and Bertrand, J. A. (1977) Chem. Commun. 456.
- 12. Zalkow, L. H. and Ghosal, M. (1969) J. Org. Chem. 34, 1646.
- 13. Zalkow, L. H., Cabat, G. A., Chetty, G. L., Chosal, M. and Keen, G. (1968) Tetrahedron Letters 5727.
- Zalkow, L. H., Burke, N. I. and Keen, G. (1964) Tetrahedron Letters 217.
- Zalkow, L. H., Epko, B. A. and Burke, N. I. (1977) Phytochemistry 16, 1610.
- Zalkow, L. H., Burke, N. I., Cabet, G. A. and Grula, E. A. (1962) J. Med. Pharm. Chem. 5, 1342.

Phytochemistry, Vol. 25, No. 12, pp. 2895-2896, 1986. Printed in Great Britain.

0031-9422/86 \$3.00+0.00 Pergamon Journals Ltd.

A SPIROSTANOL GLYCOSIDE FROM AGAVE CANTALA

G. PANT*, O. P. SATI, K. MIYAHARA† and T. KAWASAKI†

Department of Chemistry, University of Garhwal, Srinagar (U.P.), 246174, India; †Faculty of Pharmaceutical Sciences, Setsunan University, 45-1, Nagaotoge-cho, Hirakata, Osaka, 573-01, Japan

(Received 3 January 1986)

Key Word Index—Agave cantala; Agavaceae; rhizomes; saponin; spirostanol glycoside; tigogenin; ¹³C INEPT and ¹H decoupled NMR.

Abstract—A new spirostanol glycoside, cantalasaponin-3, isolated from the methanolic extract of the rhizomes of Agave cantala, has been characterized.

INTRODUCTION

Agave species have been used for medicinal purposes and various saponins have been reported from A. cantala Roxb. [1]. This communication deals with the structure elucidation of cantalasaponin-3 (2) isolated from the rhizomes of this plant.

RESULTS AND DISCUSSION

Saponin 2, a 25*R*-spirostane derivative (IR) was found to have an M_r of 1034, as indicated from the pseudo-molecular ions at m/z 1073, 1057 and 1035 corresponding to $[M+K]^+$, $[M+Na]^+$ and $[M+H]^+$ ions, respectively, in its FD-mass spectrum. The peaks at m/z 925/903 and at 895/873 arise from the loss of terminal pentose and hexose, respectively, from $[M+Na]^+/[M+H]^+$ ions.

Acidic hydrolysis of 2 gave tigogenin, and D-galactose, D-glucose and D-xylose in the ratio 1:2:1.

The interglycosidic linkages in 2 were established by means of ¹³C NMR spectroscopy. ¹³C chemical shifts of methyl pyranosides of β -D-galactose, β -D-glucose and β -D-xylose in pyridine- d_5 [2-4] and those of tigogenin [5] are available and the signals in 2 were assigned by the application of glycosylation shifts [2, 3]. In the ¹³C INEPT spectrum, by setting the delay time Δ as 3/4J[6], CH and Me signals were in phase, CH₂ out of phase, and quaternary carbons and carbons of the solvent were absent. In the ¹H decoupled mode the signals in the sugar region of 2 and 1 [1], the 12-oxo analogue of 2, were almost superimposable. This observation was further supported when the permethylation products of 2 and its partial hydrolysis product, PS2, gave methylated sugars identical to those obtained after permethylation of 1 and PS₃ [1], respectively.

The anomeric linkages were deduced as β from the ¹H NMR spectrum of 2 and by the application of Klyne's rule [7].

Thus, 2 was characterized as $3-O-[\{\beta-D-glucopyranosyl(1 \rightarrow 3)-\beta-D-glucopyranosyl(1 \rightarrow 2)\}\{\beta-D-xylopyranosyl(1 \rightarrow 4)\}-\beta-D-galactopyranosyl]-(25R)-5\alpha-spirostan-3\beta-ol, a 12-deoxo analogue of 1 [1]. This provides an example of the co-occurrence of hecogenin and tigogenin glycosides with identical sugar chains.$

^{*}To whom correspondence should be addressed.

2896 Short Reports

EXPERIMENTAL

Almost all the instrumentation techniques were as described in ref. [1]. ¹³C INEPT and ¹H decoupled, ¹H NMR spectra were recorded on a JEOL FX-100 Fourier-transform spectrometer operating at 25/100 MHz. Isolation of 2 and the solvent systems used for the TLC examination of sugars and methylated sugars are detailed in ref. [1]. The compounds on TLC were visualized with 10% ethanolic H₂SO₄ and on prep. TLC by spraying with H₂O.

Compound 2. Colourless plates (130 mg) from aq. EtOH, mp 298–302°, $[\alpha]_D^{15-17}$ – 54.8° (C₅H₅N; c 1.29). IR v_{max}^{KBr} cm⁻¹: 3400 (OH), 985, 925, 900, 870 (intensity 900 > 925, 25Rspiroketal); FDMS, m/z (rel. int.): 1073 [M + K]⁺ (10.1), 1057 [M $+ \text{Na}^+ (100.0), 1035 [M + H]^+ (11.9), 925 [M + \text{Na} - 132]^+$ (27.8), 903 $[M + H - 132]^+$ (23.0), 895 $[M + Na - 162]^+$ (10.5), $873 [M + H - 162]^+ (10.5), 741 [M + H - 132 - 162]^+ (3.8), 579$ $[M+H-132-162-162]^+$ (4.3), 399 $[genin+H-H_2O]^+$ (7.2), 163 $[hex+H-H_2O]^+$ (8.3), 133 $[xyl+H-H_2O]^+$ (14.0); 1 H NMR: δ 0.67 (6H, m, 18-Me, 27-Me), 0.82 (3H, s, 19-Me), 1.12 (3H, d, J = 7 Hz, 21-Me), 4.85 (1H, d, J = 7.1 Hz, H-1 of glu),5.20 (1H, d, J = 7.3 Hz, H-1 of glu), 5.26 (1H, d, J = 7 Hz, H-1 of gal), 5.61 (1H, br s, H-1 of xyl); 13 C NMR: aglycone: δ 37.2, 29.9, 78.6, 34.8, 44.6, 29.0, 32.4, 35.3, 54.4, 35.8, 21.3, 40.1, 40.8, 56.4, 31.8, 81.1, 63.0, 16.6, 12.3, 42.0, 15.0, 109.2, 32.1, 28.9, 30.6, 66.9, 17.3 (C-1–C-27); sugar moiety: δ 102.4, 81.1, 73.1, 79.9, 76.2, 60.2 (galactosyl C-1-C-6), 104.9, 70.7, 86.8, 70.4, 77.6, 62.4ª (glucosyl C-1-C-6), 104.9, 75.5, 78.6, 71.0, 78.6, 63.0a (glucosyl C-1'-C-6'), 104.9, 75.1, 77.4, 70.7, 67.3 (xylosyl C-1-C-5). (Found: C, 58.19; H, 7.99. C₅₀H₈₂O₂₂ requires C, 58.03; H, 7.93%.)

Acidic hydrolysis of 2. Compound 2 (15 mg) was refluxed with 2 M HCl-MeOH (1:1, 8 ml) on a boiling water bath for 3 hr to afford the aglycone (tigogenin), mp 203-205°, $[\alpha]_D^{20}$ -64° (CHCl₃; c 1.0). IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3400 (OH), 980, 920, 900, 864 (intensity 900 > 920); EIMS: m/z 416 [M]⁺. The neutralized and conc. aq. hydrolysate contained D-galactose, D-glucose and

¹³C NMR data: ^aAssignments are interchangeable between carbons marked with similar sign.

D-xylose (PC). Sugars were estimated by colorimetry using a wavelength of 420 nm.

Partial hydrolysis of 2. Compound 2 (70 mg) in 1 M HCl-n-BuOH (1:1, 20 ml) was heated at 70° for 2 hr. The BuOH layer was washed with 5% NaHCO₃ and then with H₂O and coned in vacuo to afford a residue, which was purified by prep. TLC (CHCl₃-MeOH-H₂O, 13:4:2) to give tigogenin (2.5 mg), PS₁ (6 mg) and PS₂ (20 mg).

PS₁. Colourless plates from MeOH, mp 232–235°, $[\alpha]_D^{20}$ – 38.0° (C₅H₅N; c 1.0). PS₁ (4 mg) on hydrolysis gave pgalactose and was found to be identical with tigogenin-pgalactoside [8] (IR).

Permethylation of 2 and PS₂. Compounds 2 and PS₂ (14 mg each) were separately permethylated with MeI (3 ml) and Ag₂O (200 mg) in DMF (0.5 ml). Usual work-up gave syrups which were purified by prep. TLC (C₆H₆-Me₂CO, 4:1) to yield 2a (7 mg) and PS₂a (6 mg).

Hydrolysis of 2a and PS₂a. Compound 2a and PS₂a (6 mg) each) were separately refluxed with 1 M HCl-MeOH (1:1, 5 ml) for 3.5 hr and 2 hr, respectively. The neutralized and concd hydrolysate from 2a contained 2,3,4,6-tetra-O-methyl-D-glucose, 2,3,4-tri-O-methyl-D-xylose, 2,4,6-tri-O-methyl-D-glucose and Wallenfel's positive 3,6-di-O-methyl-D-galactose, all identical to those in the hydrolysate of 1a. PS₂a gave methylated sugars identical to those in the hydrolysate of the permethylate of PS₃ [1].

REFERENCES

- Pant, G., Sati, O. P., Miyahara, K. and Kawasaki, T. (1986) Phytochemistry 25, 1491.
- Seo, S., Tomita, Y., Tori, K. and Yoshimura, Y. (1978) J. Am. Chem. Soc. 100, 3331.
- Kasai, R., Okihara, M., Asakawa, J., Mizutani, K. and Tanaka, O. (1979) Tetrahedron 35, 1427.
- Mahato, S. B., Sahu, N. P., Ganguly, A. N., Kasai, R. and Tanaka, O. (1980) Phytochemistry 19, 2017.
- Eggert, H. and Djerassi, C. (1975) Tetrahedron Letters 42, 3635.
- Doddrell, D. M. and Pegg, D. T. (1980) J. Am. Chem. Soc. 102, 6388.
- 7. Klyne, W. (1950) Biochem. J. 47, 41.
- Sharma, S. C., Chand, R., Sati, O. P. and Sharma, A. K. (1983) *Phytochemistry* 22, 1241.